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Configurational temperature for systems with constraints
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A general method is developed for constructing configurational expressions for the temperature of systems
with constraints. As an example, this method is applied to molecular systems with bonding constraints, and an
explicit formula for the temperature, in terms of only the configurational variables of the system, is derived.
This formula is tested against molecular-dynamics simulations for freely jointed Lennard-Jones 8-mer chains
and Monte Carlo simulations for a system of diatomic Lennard-Jones molecules.

PACS numbegs): 05.20-y, 05.70—a

[. INTRODUCTION indicates that the integration is restricted to regions in phase
space where the internal energy lies within the boulds
Until very recently the equilibrium thermodynamic tem- <H(I')<E+ 6E, where SE<E.

perature has been calculated almost exclusively using the The equilibrium thermodynamic temperaturés defined
standard equipartition expression. This expression is, ofs
course, entirely kinetic, involving averages of the peculiar
kinetic energy. Recently it has been shown that the tempera- E _(9_3 )
ture of classical atomic systems may be calculated from only T JE V’
configurational information. The so-called configurational
temperature, derived by Butlet al.[1], based on ideas pro- where the derivative is taken while holding the total volume
posed by Rugh2] for the functional differentiation of the V of the system fixed.
microcanonical entropy with respect to the internal energy, We can perform this derivative by displacing the phase
shows that the thermodynamic temperature may be calcypointsI” according to
lated from averages of the first and second spatial derivatives
of the interatomic potential energy. To date, however, ex- I =T+ni(I"AE, (©)]
pressions for the configurational temperature have been re- . , .
stricted to atomic systems. In the present paper, we shoWNereéAE is a fixed scalar quantity, and
how a configurational temperature may be defined for sys-

tems subject to constraints. We propose an explicit configu- E g;;(I")g;H(T)

rational expression for the temperature of classical molecular ni(T) = @)
systems subject to holonomic bonding constraints. Such con- : '

straints are used frequently in modeling oligomeric and poly- % [aH () ]gu(D[AHI]

meric fluids. We then test these expressions in equilibrium
and nonequilibrium simulations of freely jointed Lennard- and g;=4/dT;. The form of the(metric matrix g;;(I) is

Jones chains. fairly arbitrary [2]; however, we must ensure that
Sl dH () 1gi(M) [ H(T) ]#0 for all T'. Becauseg;; is
Il. DYNAMICAL TEMPERATURE FOR SYSTEMS not unique, there are many microscopic expressions for the
WITH CONSTRAINTS thermodynamic temperature. One such expression is equal,

) ) in the thermodynamic limit, to the well-known kinetic tem-
The entropyS of an isolated system with total enery  perature/see Eq(17), belowl. At equilibrium, the averages

and HamiltoniarH is given by of each of these expressions are all equal.
Becausex;n;(I")9;H(I")=1, the total energy of the sys-
S(E)=kBInJ dr, (1) tem at each of the shifted phase poifts is equal toE
wC(E) +AE+O(AE?). The Jacobian) of the transformationl’
—I'is

wherekg is Boltzmann’s constant, anfl is a phase-space

vector of the system. The subscripC(E) on the integral J(F)=1+AEZ an(D)+ -+ - )
I

*Present address: Department of Chemical Engineering, UMISTThe entropy of a system with enerdy+ AE can then be
P.O. Box 88, Manchester M60 1QD, United Kingdom. written as
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IIl. EXAMPLE: BONDING CONSTRAINTS

S(E+AE)=kgIn J dr=kg InJ J(r)dr

uC(E+AE) uC(E) In this section, we focus on d-dimensional system of
Nmo Mmolecules, where moleculés made up of; spherical
=S(E)+k|32 (giny(T))AE+ - - (6) atoms that are bonded together in a pairwise fashion. The
i

distance between two atoms is constrained to be fixed. For
this system, the components of the phase-space vEatan
where the angular brackets denote the averdge-) be written more explicitly a$’; .., which refers to a position

= (- Al [ o dT. or momentum coordinate of atoma on moleculei. For a
Combining Eqgs(2) and (6), we arrive at =1.2,...d, T'j,. refers to a positional coordinate; far
=d+1, d+2,...,Ad, T;,, refers to a momentum coordi-
1 -~ nate.
kB_T_Z (aini(I)) The constraint equations are given by
s/, gi;(T)a;H(T) Gu(D)=(Fip—Tig)?—12=0 for a=1.2,...K,
- — I L
! 2 [HID)]ga(DLAHT)] G (1) =(Figr —Fiw)- (Piar—Piar) =0
7) for a=K+1K+2,...,X, (12)

which is the expression for the dynamical temperature prewhere K is the number of bonds in the systefy, is the
viously derived by Rugli2]. By choosingg;;(I')=0 if i orj  length of the bondr;, is the position of atomx’ in mol-
refers to a momentum variable and is equal to the identityeculei, andp;, is the momentum of atom’ in moleculei.
matrix if bothi andj refer to coordinate variables, E¢f)  The first set of constraints ensure that the bonds have the
reduces to the expression for the configurational temperatur@ppropriate lengths. The second set of constraints ensure that
for a system without constraints, derived by Butler and cothe instantaneous rate of change of the bond lengths is zero.
workers[1]. For these constraints, Eq4.0) can be satisfied by choos-

Now we consider a system with a setkfconstraints of ing g;;(I') —Jj,ra,jen(I’) such that
the general form:

(sij(sab if a and bﬁd,

G, (=0 for a=12,...K. (8) Giarajarn(l)=1 (12

otherwise,

The entropy for this system is still given by E(L); how-  \where s, is the Kronecker delta. To verify that this choice

ever, the integral is further restricted to phase palhtshere  of g;;(I") does indeed satisfy Eq$10), we substitute Eq.
the constraints given in E@8) are satisfied. (12) into Egs.(10) to find

The derivation of the dynamical temperature for the con-
strained system is identical to the derivation given above.

However, now when we make the transformatiBa-T", . E ) [FiaraH(T) ]Giarajarb(T)[3janGa(l)]
according to Eqgs(3) and (4), we must ensure that the con- la’a,ja’d
straints are satisfied at the new phase palfits given that JH(T) G (T)
they are satisfied at the old phase poihtsBy noting that = L—
ia'a" ariar ariau
Gu(I")=G(I)+AEY, n(T)§;Gy(D)+- - > dH(T) dG ()
I = .
ia’ aria’ o &ria”
=AE2 ni(D)3Gu()+ -+, ) —0 for a=12,...K,

where in the last line we have used the fact that
%a,aGa(F)/ﬁria;O for all constraintsa [see Eqs(11)].
Therefore, we find that the constraint equations are indeed

we find that we can satisfy the constraints by choosing th
matrix g;; (I') such that

satisfied.
> [GH(D)]g;;(D[4,G,(I)]=0 for a=1,2,...K. With this choice ofg;;(I), Eq.(7) reduces to
i
(10 1 e & < g [1 oH >

Therefore, the dynamical temperature of a system with KeT =1 o= \ i [ ari
constraints is still given by Eq7); however, now there is the Nmol  Mi 1 H
additional restriction thag;;(I') must be chosen to satisfy - - J ‘9_ +.. (13
Egs.(10). In the next section, we derive an explicit formula =1 o=t \A e ori, ’

for the configurational temperature of a system with molecu-
lar bonding constraints. where
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Nmol n; JH JH 4.5 T T T I T I T I T
. 21 a,a’'=1 g &ria’ . (14) 4.0 —O
@ L o |
We refer to the temperature defined by E@s8) and(14) as 3 35| o} -
the configurational temperaturg;,,s, because it depends F o) _
only on the positions of the atoms in the system. Note, inthe ;g o o o © -
casen;=1 for all i, this expression reduces to the configu- i
rational temperature derived by Butler and coworKdris 95 . I \ I \ I . 1 .
The expression we have given for the configurational tem- 0.0 02 0.4 06 038 1.0
perature is not unique, and by choosing different forms for vmaye)™
g;j(I') one can obtain different expressions fy,,¢. The
only restrictions on the form of);;(I") are that Eqgs(10) FIG. 1. NEMD simulation results for freely jointed Lennard-
must be satisfied and th&t, [ 9,H(I") ]g,(I)[dH(I)]#0 Jones 8-mer chains &BET,;,/e=3 and a total monomer density of
forall I po®=07.
IV. COMPARISON WITH COMPUTER SIMULATIONS FiNa: — jrq) , (20)
la

In order to verify the formula for the configurational tem-

perature, we perform computer simulations ir 3 dimen-  where p;, is the momentum of atora of moleculei, ng,

sional systems of Lennard-Jones atoms with bonding con=8 is the number of atoms per molecug,is a unit vector

straints. The atoms interact through the Lennard-Jonedirected in the positivex direction,y; is they coordinate of

potential the center-of-mass of moleculeandy is the strain rate. The
u(r)=14e (15) bonding interactions, ané_, is the force due to bonding

' constraintgsee Refs[6] and[3]). The explicit form ofFiCa is
wherer is the distance between atoms. The length betweethermostat is given by
two bonded atoms is rigidly fixed at. The total configura-

vectorF, is the force on atom of moleculei due to non-
12 6
o o
7 -
given in the Appendix. The multiplie{ for the molecular

. . NmoI
tional ener of the system is
gy " T/ n g 2, (Fi-Pi=yPyiPy) .
b 2 = Nmol !
b=— u(lri, i), 16
2 m_z:l 27 (| ia,ja |) (16) Z PP

where n,, is the (fixed) number of atoms per molecule

lia,ja’ =Tia—Tjar» andr;, is the position of atom of mol- We performed simulations for the Lennard-Jones chain

eculei. system under various applied strain ratgswith kgTyi,/€
Molecular-dynamics simulations were conducted on sys-y pp B 'kin

— ; 3_ C
tems of linear Lennard-Jones chains, each consisting,,of I; t?oingoigzzggalorpgn% E?roﬁe;g—,sgyrﬁg Ie;&&igcgtg'nr?;
=8 freely jointed atoms per chain. We employ the molecular

: . . and a cutoff of 3r was used. To integrate the equations of
version of the SLLOD algorithni3] given by Edberg, Mor- . . )
riss, and Evang4,5] combined with a Gaussian thermostatmouon' the fourth-order Gear predictor-corrector algorithm

; ; — 27 \1/2 i
for the molecular kinetic temperatuiflg;,, defined as was used W'th.a time stept 0'00.1 Mo~/ e)™. In_ addi
tion, we have incorporated a continuous proportional feed-

N back mechanism7] to cancel drift in the bond length con-
mol
D Pi-Pi _ 3(Nmoi— 1)k To. 1 straints.

: B ' kins ( 7) . - . .

=1 2nym 2 For each set of conditions, an equilibration periodt of

=5(mo?/€)Y? was employed, and the properties were col-

whereP; is the total momentum of molecuie N, is the  lected over a production run o 50(mo?/€)*2. The results
total number of chains in the system, amds the mass of of the simulations are summarized in Fig. 1, wherés the
each atom. In the SLLOD algorithm, a constant strain rate istrain rate. At zero strain rate, the configurational tempera-
applied to the system by employing the ussldling brick  ture is equal to the kinetic temperature. This verifies the fact
periodic boundary conditiong3] along with the following that when a system is in thermodynamic equilibrium, the

* whereF=="" (FN,+FF).

i

equations of motion: average configurational temperature equals the average ki-
netic temperature, even when holonomic constraints are
. Pia present. However, as the strain rate increases, the configura-

o=y T &Yis (18 tional temperature increases monotonically with the strain

rate, when the kinetic temperature is kept fixed. Thus, al-
1 1 though there are many expressions for theique equilib-
Pio=FN+FE — —eyPyi— — (P, (19  rium thermodynamlc temperature, away from equilibrium,
Nm n these expressions have distinct, unequal values.
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perature over the others. They are each temperaturelike
phase functions. In general, it seems that if the kinetic tem-

6

W 3

\%“ ;_ perature is held fixed, the nonequilibrium value of the con-

T 2 figurational temperature will be a monotonic increasing func-
1- tion of the strain rate. We expect that the converse might also
e be true, namely, if the configurational temperature is held
4 T fixed, then the !(inetic tempe(ature should be a monotonic
3 increasing function of the strain rate.

o 2 In spite of the fact that we can legitimately expect each of

g 1 these temperatures to be equal only at equilibrium, computer
_?Z simulations show that, in temperature quenches, the values
7Y P P i | of the kinetic and configurational temperature equilibrate far

more quickly than do other propertiés.g., pressure or en-

-4 ergy).
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FIG. 2. Monte Carlo simulation for diatomic Lennard-Jones The force on atomu of moleculei due to the bonding
. . 3 A ; X
fluid at a total monomer density gfc°=0.5: (a) configurational constraints is given by

temperature(b) pressure, andc) interaction energy. The configu-

rational temperature rapidly attains its equilibrium value in compa- Nm—1

isi i i i C_

rision with the pressure and the interaction energy. Fi = E Mo Mo (P —Tiar+1), (A1)
a'=1

In order to determine the ability of the configurational where the matriM is given by
temperature to respond to sudden changes in the “equilib-
rium” temperature, we performed aNVT Monte Carlo -1 0 0
(MC) simulation of a rapid quench for a system of 864 di-
atomic Lennard-Jones moleculé$728 atoms with bond 1 -1 0
length o -1

The simulation was started from a configuration previ-
ously equilibrated akgT/e=4 and a monomer density of M=
po>=0.5. The simulation was run &T/e=4 for a period
of 4000 MC steps, where an MC step consists of 864 at-
tempted rotation-translation moves. At step 4000, the tem-
perature was reduced fgT/e=0.5, where it remained for
5000 MC steps. Then, the temperature was returned to (A2)
kgT/e=4 for the remainder of the simulation.

Figure 2 shows the evolution of tie) instantaneous con- for linear freely jointed 8-mer chains. The vectoiis given
figurational temperaturégT.on¢/€ [See Eq.(13)], (b) the by the solution of the equation

=
B P O O o o o

0
0
0
0
0
0
-1

o O O O O
o O O O
o O O -

I
O O kB O O O
O kP O O O o

pressurepo’/ e, and(c) the interaction energy per molecule -1
U/(Nnoi€). The configurational temperaturg,,,; rapidly _ 2 Lok =(F o, )-(EN N
responds to the temperature changes, attaining its equilib- PPl b ThatllA e Tiatl

rium value much more quickly than the pressure or the in- )
teraction energy. Similar behavior has been observedl for +(Pi,a=Piar1) (A3)

=2 dimensional systems of Lennard-Jones atpiis where the matrisL is given by

2 -1 0 0 0
-1 2 -1 0 0

V. CONCLUSIONS

We have derived a completely configurational expression
for the equilibrium thermodynamic temperature of systems 6o -1 2 -1 O
subject to holonomic constraints. We have verified that at 0O 0 -1 2 -1
equilibrium this new “configurational temperature” is equal

R N P O O O o
I\)I—‘OOOOO

to the thermodynamic temperature, which is conventionally 0 0 0 -1 2 -
given by the kinetic temperatufsee Eq(17)]. 0 0 0 0 -1 -
Away from equilibrium, these different expressions for 0 0 0 0 0 —

the temperature have distinct average values. There seems to
be no good reason for preferring one expression for the tem- (A4)
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