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Configurational temperature for systems with constraints
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A general method is developed for constructing configurational expressions for the temperature of systems
with constraints. As an example, this method is applied to molecular systems with bonding constraints, and an
explicit formula for the temperature, in terms of only the configurational variables of the system, is derived.
This formula is tested against molecular-dynamics simulations for freely jointed Lennard-Jones 8-mer chains
and Monte Carlo simulations for a system of diatomic Lennard-Jones molecules.

PACS number~s!: 05.20.2y, 05.70.2a
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I. INTRODUCTION

Until very recently the equilibrium thermodynamic tem
perature has been calculated almost exclusively using
standard equipartition expression. This expression is,
course, entirely kinetic, involving averages of the pecu
kinetic energy. Recently it has been shown that the temp
ture of classical atomic systems may be calculated from o
configurational information. The so-called configuration
temperature, derived by Butleret al. @1#, based on ideas pro
posed by Rugh@2# for the functional differentiation of the
microcanonical entropy with respect to the internal ener
shows that the thermodynamic temperature may be ca
lated from averages of the first and second spatial derivat
of the interatomic potential energy. To date, however,
pressions for the configurational temperature have been
stricted to atomic systems. In the present paper, we s
how a configurational temperature may be defined for s
tems subject to constraints. We propose an explicit confi
rational expression for the temperature of classical molec
systems subject to holonomic bonding constraints. Such c
straints are used frequently in modeling oligomeric and po
meric fluids. We then test these expressions in equilibri
and nonequilibrium simulations of freely jointed Lennar
Jones chains.

II. DYNAMICAL TEMPERATURE FOR SYSTEMS
WITH CONSTRAINTS

The entropyS of an isolated system with total energyE
and HamiltonianH is given by

S~E!5kB ln E
mC(E)

dG, ~1!

wherekB is Boltzmann’s constant, andG is a phase-spac
vector of the system. The subscriptmC(E) on the integral
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indicates that the integration is restricted to regions in ph
space where the internal energy lies within the boundsE
,H(G),E1dE, wheredE!E.

The equilibrium thermodynamic temperatureT is defined
as

1

T
5

]S

]E U
V

, ~2!

where the derivative is taken while holding the total volum
V of the system fixed.

We can perform this derivative by displacing the pha
pointsG according to

Gi85Gi1ni~G!DE, ~3!

whereDE is a fixed scalar quantity, and

ni~G!5

(
j

gi j ~G!] jH~G!

(
kl

@]kH~G!#gkl~G!@] lH~G!#

, ~4!

and ] i[]/]Gi . The form of the~metric! matrix gi j (G) is
fairly arbitrary @2#; however, we must ensure tha
(kl@]kH(G)#gkl(G)@] lH(G)#Þ0 for all G. Becausegi j is
not unique, there are many microscopic expressions for
thermodynamic temperature. One such expression is eq
in the thermodynamic limit, to the well-known kinetic tem
perature@see Eq.~17!, below#. At equilibrium, the averages
of each of these expressions are all equal.

Because( ini(G)] iH(G)51, the total energy of the sys
tem at each of the shifted phase pointsG8 is equal toE
1DE1O(DE2). The JacobianJ of the transformationG
→G8 is

J~G!511DE(
i

] ini~G!1•••. ~5!

The entropy of a system with energyE1DE can then be
written as

T,
4764 ©2000 The American Physical Society
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PRE 62 4765CONFIGURATIONAL TEMPERATURE FOR SYSTEMS . . .
S~E1DE!5kB ln E
mC(E1DE)

dG5kB lnE
mC(E)

J~G!dG

5S~E!1kB(
i

^] ini~G!&DE1•••. ~6!

where the angular brackets denote the average^•••&
5*mC(E)(•••)dG/*mC(E)dG.

Combining Eqs.~2! and ~6!, we arrive at

1

kBT
5(

i
^] ini~G!&

5(
i j K ] iH gi j ~G!] jH~G!

(
kl

@]kH~G!#gkl~G!@] lH~G!#J L ,

~7!

which is the expression for the dynamical temperature p
viously derived by Rugh@2#. By choosinggi j (G)50 if i or j
refers to a momentum variable and is equal to the iden
matrix if both i and j refer to coordinate variables, Eq.~7!
reduces to the expression for the configurational tempera
for a system without constraints, derived by Butler and
workers@1#.

Now we consider a system with a set ofK constraints of
the general form:

Ga~G!50 for a51,2, . . . ,K. ~8!

The entropy for this system is still given by Eq.~1!; how-
ever, the integral is further restricted to phase pointsG where
the constraints given in Eq.~8! are satisfied.

The derivation of the dynamical temperature for the co
strained system is identical to the derivation given abo
However, now when we make the transformationG→G8,
according to Eqs.~3! and ~4!, we must ensure that the con
straints are satisfied at the new phase pointsG8, given that
they are satisfied at the old phase pointsG. By noting that

Ga~G8!5Ga~G!1DE(
i

ni~G!] iGa~G!1•••

5DE(
i

ni~G!] iGa~G!1•••, ~9!

we find that we can satisfy the constraints by choosing
matrix gi j (G) such that

(
i j

@] iH~G!#gi j ~G!@] jGa~G!#50 for a51,2, . . . ,K.

~10!

Therefore, the dynamical temperature of a system w
constraints is still given by Eq.~7!; however, now there is the
additional restriction thatgi j (G) must be chosen to satisf
Eqs.~10!. In the next section, we derive an explicit formu
for the configurational temperature of a system with mole
lar bonding constraints.
-
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III. EXAMPLE: BONDING CONSTRAINTS

In this section, we focus on ad-dimensional system o
Nmol molecules, where moleculei is made up ofni spherical
atoms that are bonded together in a pairwise fashion.
distance between two atoms is constrained to be fixed.
this system, the components of the phase-space vectorG can
be written more explicitly asG iaa , which refers to a position
or momentum coordinate of atoma on moleculei. For a
51,2, . . . ,d, G iaa refers to a positional coordinate; fora
5d11, d12, . . . ,2d, G iaa refers to a momentum coordi
nate.

The constraint equations are given by

Ga~G!5~r ia82r ia9!
22 l a

250 for a51,2, . . . ,K,

Ga~G!5~r ia82r ia9!•~pia82pia9!50

for a5K11,K12, . . . ,2K, ~11!

where K is the number of bonds in the system,l a is the
length of the bond,r ia8 is the position of atoma8 in mol-
eculei, andpia8 is the momentum of atoma8 in moleculei.
The first set of constraints ensure that the bonds have
appropriate lengths. The second set of constraints ensure
the instantaneous rate of change of the bond lengths is z

For these constraints, Eqs.~10! can be satisfied by choos
ing gi j (G)→gia8a, j a9b(G) such that

gia8a, j a9b~G!5H d i j dab if a and b<d,

0 otherwise,
~12!

wheredab is the Kronecker delta. To verify that this choic
of gi j (G) does indeed satisfy Eqs.~10!, we substitute Eq.
~12! into Eqs.~10! to find

(
ia8a, j a9b

@] ia8aH~G!#gia8a, j a9b~G!@] j a9bGa~G!#

5 (
ia8a9

]H~G!

]r ia8

•

]Ga~G!

]r ia9

5(
ia8

]H~G!

]r ia8

•S (
a9

]Ga~G!

]r ia9
D

50 for a51,2, . . . ,K,

where in the last line we have used the fact th
(a8]Ga(G)/]r ia850 for all constraintsa @see Eqs.~11!#.
Therefore, we find that the constraint equations are ind
satisfied.

With this choice ofgi j (G), Eq. ~7! reduces to

1

kBT
5 (

i 51

Nmol

(
a,a851

ni K ]

]r ia
•F 1

D

]H

]r ia8
G L

5 (
i 51

Nmol

(
a,a851

ni K 1

D

]

]r ia
•

]H

]r ia8
L 1•••, ~13!

where
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D5 (
i 51

Nmol

(
a,a851

ni ]H

]r ia
•

]H

]r ia8

. ~14!

We refer to the temperature defined by Eqs.~13! and~14! as
the configurational temperatureTcon f , because it depend
only on the positions of the atoms in the system. Note, in
caseni51 for all i, this expression reduces to the config
rational temperature derived by Butler and coworkers@1#.

The expression we have given for the configurational te
perature is not unique, and by choosing different forms
gi j (G) one can obtain different expressions forTcon f . The
only restrictions on the form ofgi j (G) are that Eqs.~10!
must be satisfied and that(kl@]kH(G)#gkl(G)@] lH(G)#Þ0
for all G.

IV. COMPARISON WITH COMPUTER SIMULATIONS

In order to verify the formula for the configurational tem
perature, we perform computer simulations ford53 dimen-
sional systems of Lennard-Jones atoms with bonding c
straints. The atoms interact through the Lennard-Jo
potential

u~r !54eF S s

r D 12

2S s

r D 6G , ~15!

wherer is the distance between atoms. The length betw
two bonded atoms is rigidly fixed ats. The total configura-
tional energyF of the system is

F5
1

2 (
i , j 51

Nmol

(
a,a851

nm

u~ ur ia, j a8u!, ~16!

where nm is the ~fixed! number of atoms per molecule
r ia, j a85r ia2r j a8 , andr ia is the position of atoma of mol-
eculei.

Molecular-dynamics simulations were conducted on s
tems of linear Lennard-Jones chains, each consisting onm
58 freely jointed atoms per chain. We employ the molecu
version of the SLLOD algorithm@3# given by Edberg, Mor-
riss, and Evans@4,5# combined with a Gaussian thermost
for the molecular kinetic temperatureTkin , defined as

(
i 51

Nmol Pi•Pi

2nmm
5

3~Nmol21!

2
kBTkin , ~17!

wherePi is the total momentum of moleculei, Nmol is the
total number of chains in the system, andm is the mass of
each atom. In the SLLOD algorithm, a constant strain rat
applied to the system by employing the usualsliding brick
periodic boundary conditions@3# along with the following
equations of motion:

ṙ ia5
pia

m
1exgyi , ~18!

ṗia5Fia
N 1Fia

C 2
1

nm
exgPyi2

1

nm
zPi , ~19!
e
-

-
r

n-
es

n

-

r

is

Fia
N 52

]F

]r ia
, ~20!

where pia is the momentum of atoma of molecule i, nm
58 is the number of atoms per molecule,ex is a unit vector
directed in the positivex direction,yi is they coordinate of
the center-of-mass of moleculei, andg is the strain rate. The
vectorFia

N is the force on atoma of moleculei due to non-
bonding interactions, andFia

C is the force due to bonding
constraints~see Refs.@6# and@3#!. The explicit form ofFia

C is
given in the Appendix. The multiplierz for the molecular
thermostat is given by

z5

(
i 51

Nmol

~Fi•Pi2gPxiPyi!

(
i 51

Nmol

Pi•Pi

, ~21!

whereFi5(a51
nm (Fia

N 1Fia
C ).

We performed simulations for the Lennard-Jones ch
system under various applied strain ratesg, with kBTkin /e
53 and at a total monomer density ofrs350.7. Each simu-
lation consisted of a total of 256 molecules~2048 atoms!,
and a cutoff of 3s was used. To integrate the equations
motion, the fourth-order Gear predictor-corrector algorith
was used with a time stepDt50.001 (ms2/e)1/2. In addi-
tion, we have incorporated a continuous proportional fe
back mechanism@7# to cancel drift in the bond length con
straints.

For each set of conditions, an equilibration period ot
55(ms2/e)1/2 was employed, and the properties were c
lected over a production run oft550(ms2/e)1/2. The results
of the simulations are summarized in Fig. 1, whereg is the
strain rate. At zero strain rate, the configurational tempe
ture is equal to the kinetic temperature. This verifies the f
that when a system is in thermodynamic equilibrium, t
average configurational temperature equals the average
netic temperature, even when holonomic constraints
present. However, as the strain rate increases, the config
tional temperature increases monotonically with the str
rate, when the kinetic temperature is kept fixed. Thus,
though there are many expressions for the~unique! equilib-
rium thermodynamic temperature, away from equilibriu
these expressions have distinct, unequal values.

FIG. 1. NEMD simulation results for freely jointed Lennard
Jones 8-mer chains atkBTkin /e53 and a total monomer density o
rs350.7.
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In order to determine the ability of the configuration
temperature to respond to sudden changes in the ‘‘equ
rium’’ temperature, we performed anNVT Monte Carlo
~MC! simulation of a rapid quench for a system of 864
atomic Lennard-Jones molecules~1728 atoms! with bond
lengths.

The simulation was started from a configuration pre
ously equilibrated atkBT/e54 and a monomer density o
rs350.5. The simulation was run atkBT/e54 for a period
of 4000 MC steps, where an MC step consists of 864
tempted rotation-translation moves. At step 4000, the te
perature was reduced tokBT/e50.5, where it remained fo
5000 MC steps. Then, the temperature was returned
kBT/e54 for the remainder of the simulation.

Figure 2 shows the evolution of the~a! instantaneous con
figurational temperaturekBTcon f /e @see Eq.~13!#, ~b! the
pressureps3/e, and~c! the interaction energy per molecu
U/(Nmole). The configurational temperatureTcon f rapidly
responds to the temperature changes, attaining its equ
rium value much more quickly than the pressure or the
teraction energy. Similar behavior has been observed fod
52 dimensional systems of Lennard-Jones atoms@1#.

V. CONCLUSIONS

We have derived a completely configurational express
for the equilibrium thermodynamic temperature of syste
subject to holonomic constraints. We have verified that
equilibrium this new ‘‘configurational temperature’’ is equ
to the thermodynamic temperature, which is conventiona
given by the kinetic temperature@see Eq.~17!#.

Away from equilibrium, these different expressions f
the temperature have distinct average values. There seem
be no good reason for preferring one expression for the t

FIG. 2. Monte Carlo simulation for diatomic Lennard-Jon
fluid at a total monomer density ofrs350.5: ~a! configurational
temperature,~b! pressure, and~c! interaction energy. The configu
rational temperature rapidly attains its equilibrium value in com
rision with the pressure and the interaction energy.
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perature over the others. They are each temperature
phase functions. In general, it seems that if the kinetic te
perature is held fixed, the nonequilibrium value of the co
figurational temperature will be a monotonic increasing fun
tion of the strain rate. We expect that the converse might a
be true, namely, if the configurational temperature is h
fixed, then the kinetic temperature should be a monoto
increasing function of the strain rate.

In spite of the fact that we can legitimately expect each
these temperatures to be equal only at equilibrium, comp
simulations show that, in temperature quenches, the va
of the kinetic and configurational temperature equilibrate
more quickly than do other properties~e.g., pressure or en
ergy!.
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APPENDIX: CONSTRAINT FORCES

The force on atoma of molecule i due to the bonding
constraints is given by

Fia
C 5 (

a851

nm21

Maa8la8~r ia82r ia811!, ~A1!

where the matrixM is given by

M5S 21 0 0 0 0 0 0

1 21 0 0 0 0 0

0 1 21 0 0 0 0

0 0 1 21 0 0 0

0 0 0 1 21 0 0

0 0 0 0 1 21 0

0 0 0 0 0 1 21

D
~A2!

for linear freely jointed 8-mer chains. The vectorl is given
by the solution of the equation

2 (
a851

nm21

Laa8la85~r i ,a2r i ,a11!•~Fi ,a
N 2Fi ,a11

N !

1~pi ,a2pi ,a11!2, ~A3!

where the matrixL is given by

L5S 2 21 0 0 0 0 0

21 2 21 0 0 0 0

0 21 2 21 0 0 0

0 0 21 2 21 0 0

0 0 0 21 2 21 0

0 0 0 0 21 2 21

0 0 0 0 0 21 2

D .

~A4!

-
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